二维前缀和公式: s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
求给定子矩阵的值: 起点 x1、y1,终点x2、y2 的矩阵之和: sum=s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1];
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
int n, m, k;
int a[N][N];
int s[N][N];
int main()
{
cin >> n >> m >> k;
//计算前缀可边读边算
for (int i = 1; i <= n; i ++)
{
for (int j = 1; j<= m; j ++)
{
cin >> s[i][j];
s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
}
}
//询问给定左上角坐标和右下角坐标的子矩阵之和
while (k --)
{
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
cout << s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1] << endl;
}
return 0;
}